Simulação Biocombustíveis -Produção de biodiesel Combustíveis Química 2ª Série | Ensino Médio CONTEÚDOS DIGITAIS MULTIMÍDIA

Coordenação Didático-Pedagógica

Stella M. Peixoto de Azevedo Pedrosa

Redação e Revisão

Camila Welikson

Projeto Gráfico

Eduardo Dantas

Diagramação

Amanda Cidreira

Revisão Técnica

Nádia Suzana Henriques Schneider

Produção

Pontifícia Universidade Católica do Rio de Janeiro

Realização

Fundo Nacional de Desenvolvimento da Educação Ministério da Ciência e Tecnologia Ministério da Educação

Simulação (Software)

Tema: Biocombustíveis - Produção de biodiesel

Área de aprendizagem: Química

Conteúdo: Combustíveis

Conceitos envolvidos: combustível biodegradável, reações químicas, transesterificação alcalina, craqueamento termocatalítico, hidrotratamento catalítico.

Público-alvo: 2ª série do Ensino Médio

Objetivo geral:

Mostrar como o biodiesel é produzido em laboratório a partir de óleo de soja.

Objetivos específicos:

Definir biodiesel;

Compreender como o biodiesel é produzido; Identificar quais são as matérias-primas mais

Identificar quais são as matérias-primas m usadas na produção do biodiesel;

Listar os equipamentos e reagentes usados na produção de biodiesel em laboratório;

Calcular o rendimento de biodiesel feito com mamona, dendê e soja.

Pré-requisitos:

Não há pré-requisitos.

Tempo previsto para a atividade:

Consideramos que uma aula (45 a 50 minutos) será suficiente para o desenvolvimento das atividades propostas.

Introdução

Nossos alunos estão inseridos em uma realidade veloz e interativa, na qual a utilização do computador é algo corriqueiro. Por isso, é importante pensar em novos modos de ensinar e aprender, levando em consideração o uso dos objetos educacionais digitais como uma maneira de enriquecer as atividades escolares.

Porém, é importante lembrar que existem diferentes maneiras de usar este material e para que suas aulas sejam bem aproveitadas é fundamental que você estabeleça os objetivos que pretende atingir.

Lembre-se que algumas atividades são mais bem adaptadas a certas finalidades pedagógicas e outras a diferentes objetivos educacionais.

Este guia irá ajudá-lo a planejar uma aula utilizando o software *Biocombustíveis - Produção de biodiesel*. Comece seu planejamento reservando a sala de informática e não se esqueça de conferir se os equipamentos disponíveis possuem os requisitos técnicos para a utilização do software:

- Sistema operacional Windows, Macintosh ou Linux.
- Um navegador Web (Browser) que possua os seguintes recursos:
- · Plug-in Adobe Flash Player 8 ou superior instalado;
- · Recurso de Javascript habilitado pelo navegador.

professor!

Lembre-se que o assunto deve ser abordado respeitando o ritmo e a capacidade dos alunos.

dica!

Para apresentar o tema aos seus alunos, busque na página de notícias do site www.biodieselbr. com alguma reportagem recente sobre o assunto.

Apresentação do Tema

Por ser uma alternativa aos combustíveis derivados do petróleo, o **biodiesel** é notícia constante em jornais e revistas de todo o mundo.

Incite o debate sobre o tema e destaque que o biodiesel pode ser usado em quaisquer veículos com motor diesel. Explique que ele é fabricado a partir de fontes renováveis como girassol, mamona e soja e emite menos poluentes que o diesel.

Explique que, nesta aula, você irá abordar este assunto e para isso, será utilizado um software. Portanto, os trabalhos serão desenvolvidos na sala de informática.

mais detalhes!

Para aprofundar seus conhecimentos sobre este tema, leia o texto *Biodiesel: possibilidades e desafios*, de OLIVEIRA, Flavia C.C.; SUAREZ, Paulo A.Z.;SANTOS, Wildson L.P. Publicado na revista Química Nova na Escola, nº 28, maio de 2008, p. 3-8. Disponível em: http:// qnesc.sbq.org.br/online/qnesc28/o2-QS-1707.pdf

Atividades – Na Sala de Computadores

O QUE É BIODIESEL

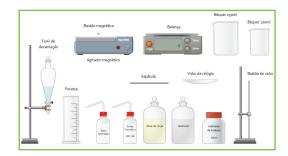
Peça para os seus alunos lerem as informações da tela que explica o que é o **biodiesel**. Destaque que é um combustível produzido a partir de gorduras animais ou de óleo vegetal e explique que a molécula de óleo vegetal é formada por três camadas de ácidos graxos ligadas a uma molécula de glicerina, ou seja, ele é um triglicídio.

Reforce que o processo para a transformação do óleo vegetal em biodiesel chama-se **transesterificação**. Para simplificar, diga que transesterificação é a separação da glicerina do óleo vegetal. Diga que cerca de 20% de uma molécula de óleo vegetal é formada por glicerina e esta torna o óleo mais denso e viscoso. No processo de transesterificação, a glicerina é removida do óleo vegetal, deixando o óleo mais fino e reduzindo a sua viscosidade.

Escreva no quadro de giz uma reação química de produção de biodiesel.

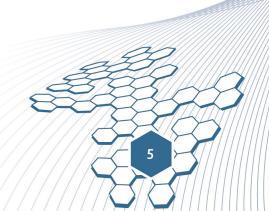
Explique que nesta reação, os triacilglicerois de origem animal reagem com o metanol na presença de um catalisador e produzem o biodiesel (éster metílico de ácido graxo), além de um subproduto (glicerol). Deixe claro que a reação de transesterificação pode ser catalisada por ácidos ou bases.

PRODUÇÃO DE BIODIESEL


Peça que seus alunos continuem navegando pela simulação e leiam as informações sobre a produção do biodiesel.

O software explica que a soja é a principal matéria-prima do biodiesel no Brasil. Neste momento, vale a pena fazer uma contextualização histórica e explicar que na década de 1970 a soja se tornou a principal cultura do agronegócio do país, passando de 1,5 milhões de toneladas em 1979 para mais de 15 milhões de toneladas em 1979.

EQUIPAMENTOS E REAGENTES


A etapa seguinte do software é a simulação do preparo de biodiesel em laboratório. Destaque as imagens dos **equipamentos e reagentes** necessários para este experimento e pergunte se seus alunos conhecem todos eles. Caso haja dúvidas, peça que utilizem a internet para fazer uma rápida pesquisa sobre os equipamentos e reagentes que serão utilizados.

Caso não haja acesso à internet no laboratório de informática da sua escola, realize uma pesquisa prévia e apresente-a para os seus alunos durante a aula. Para que a atividade se torne mais dinâmica, você pode escrever as definições dos equipamentos no quadro de giz e pedir para os alunos associarem cada equipamento à respectiva definição.

dica!

Leia o texto Biodiesel: uma alternativa de combustível limpo, de SANTOS, Ana Paula B. e PINTO, Angelo C. Ele apresenta um experimento simples sobre produção de biodiesel que pode ser feito em sua escola. O texto foi publicado na revista Química Nova na Escola, vol. 31, nº 1, fevereiro de 2009, p. 58-62. Disponível em: http://qnesc.sbq.org.br/ online/qnesc31_1/11-EEQ-3707.pdf

Destaque as quatro **etapas da produção do biodiesel** a partir do óleo de soja e em seguida peça que seus alunos sigam as instruções da simulação.

Deixe que eles trabalhem individualmente, em duplas ou em trios e permaneça o tempo todo na sala, tirando dúvidas sempre que necessário. Não deixe seus alunos sozinhos na sala de informática.

CÁLCULO DO RENDIMENTO

Para finalizar a aula, reforce que cada 1 L de óleo produz aproximadamente 1 L de biodiesel e 70 mL de glicerina. Peça, então, que eles, através de cálculos, respondam qual é a melhor matéria-prima para a produção de biodiesel: soja, mamona ou dendê.

TIPO DE OLEAGINOSA	TEOR DE ÓLEO (%m)	PRODUTIVIDADE MÉDIA (kg/ha.ano)	RENDIMENTO DE CONVERSÃO óleo-biodiesel	FATOR DE CONVERSÃO DE MASSA óleo/biodiesel	DENSIDADE APROXIMADA DO BIODIESEL
MAMONA	50	2 000	97%	1,0975	0,9
DENDÊ	20	10 000	95%	1,0975	0,9
SOJA	18	2 800	99%	1,0975	0,9

Chame a atenção para a dica que se encontra no canto superior da última tela do software. Peça que seus alunos cliquem nela para saber como **realizar os cálculos**.

mais detalhes!

Para saber mais sobre a produção de biodiesel no Brasil, leia a reportagem sobre energias alternativas publicada na revista Veja on-line intitulada O biodiesel. De soja, mamona, dendê, canola, algodão, babaçu. Disponível em: http://veja.abril.com.br/idade/exclusivo/energias_alternativas/contexto3.html

Atividades Complementares

- a) Escreva no lado externo de envelopes algumas definições relacionadas ao tema biocombustível. Dentro dos envelopes, escreva os nomes relacionados às definições. Por exemplo, em um envelope escreva "co-produto do biodiesel, resultante do processo de transesterificação" e dentro deste envelope escreva "glicerina". Distribua os envelopes fechados para os alunos e peça que cada um deles leia a definição escrita na parte externa. Os alunos deverão dar a resposta sobre aquela definição antes da abertura do envelope. Para isso, utilize o glossário disponível em: http://www.biodieselbr.com/biodiesel/definicao/glossario-abc-biocombustiveis.htm.
- b) Peça para seus alunos escreverem um texto apresentando as vantagens e as desvantagens do biodiesel. Diga que o trabalho valerá um ponto na avaliação.

Avaliação

Faz parte do planejamento de aula definir a forma de avaliação que será adotada. Lembre-se que existem várias formas de avaliação, entre elas, leitura e interpretação de textos, debate de temas, pesquisa, relatórios, dramatizações e trabalhos práticos.

O feedback do professor sobre as dificuldades e progressos alcançados é fundamental. Esteja sempre disposto a oferecer este retorno a seus alunos.

SIMULAÇÃO - SOFTWARE

EQUIPE PUC-RIO

Coordenação Geral do Projeto

Pércio Augusto Mardini Farias

Departamento de Química

Coordenação de Conteúdos

José Guerchon

Ricardo Queiroz Aucélio

Assistência

Camila Welikson

Produção de Conteúdos

PUC-Rio

CCEAD - Coordenação Central de Educação a Distância

Coordenação Geral

Gilda Helena Bernardino de Campos

Coordenação de Software

Renato Araujo

Assistência de Coordenação de Software

Bernardo Pereira Nunes

Coordenação de Avaliação e Acompanhamento

Gianna Oliveira Bogossian Roque

Coordenação de Produção dos Guias do Professor

Stella M. Peixoto de Azevedo Pedrosa

Assistência de Produção dos Guias do Professor

Tito Tortori

Redação

Alessandra Muylaert Archer

Camila Welikson

Frieda Maria Marti

Design

Amanda Cidreira

Romulo Freitas

Revisão

Alessandra Muylaert Archer

Camila Welikson